Lesson 11. Inference for Simple Linear Regression Slope - Part 1

Note. In Part 2 of this lesson, you can run the R code that generates the outputs here in Part 1.

1 Overview

- Recall the simple linear regression model (population-level):

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon \quad \varepsilon \sim \operatorname{iid} N\left(0, \sigma_{\varepsilon}^{2}\right)
$$

- We want to infer something about the population based on our sample
- We've learned how to obtain and interpret point estimates of β_{0}, β_{1} and σ_{ε}^{2}
- The parameter we're usually most interested in is
- Our main questions:

Do X and Y truly have a (linear) relationship at the population level?

What can we infer about the nature of their
relationship (size and direction) at the population level?

2 Sampling distribution of $\hat{\beta}_{1}$

- We will see shortly that hypothesis testing and confidence interval computations for β_{1} rely on the t-distribution
- Why?
- Under the conditions for simple linear regression:

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{\varepsilon}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

- We can standardize:

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\frac{\sigma_{\varepsilon}^{\varepsilon}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}} \sim N(0,1)
$$

- Since we don't know σ_{ε}^{2}, we estimate it with $\hat{\sigma}_{\varepsilon}^{2}=\frac{S S E}{n-2}$:

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{S E_{\hat{\beta}_{1}}} \sim t(n-2) \quad \text { where } \quad S E_{\hat{\beta}_{1}}=\sqrt{\frac{S S E /(n-2)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

- $\mathrm{SE}_{\hat{\beta}_{1}}$ is the standard error (SE) of the estimated slope $\hat{\beta}_{1}$

$3 t$-test for the slope of a simple linear regression model

- Question: Does the predictor variable X have a significant association with the response variable Y ?
- Formal steps:

1. State the hypotheses:
2. Calculate the test statistic:
3. Calculate the p-value:

- If the conditions for simple linear regression hold, then the test statistic t follows
$\Rightarrow p$-value $=$ \square

4. State your conclusion, based on the given significance level α :

If we reject $H_{0}(p$-value $\leq \alpha)$:
We reject H_{0} because the p-value is less than the significance level $\underline{\alpha}$. We see significant evidence that \underline{X} is associated with \underline{Y}.

If we fail to reject $H_{0}(p$-value $>\alpha)$:
We fail to reject H_{0} because the p-value is greater than the significance level α. We do not see significant evidence that \underline{X} is associated with \underline{Y}.

The underlined parts above should be rephrased to correspond to the context of the problem

Example 1. Let's look at the AccordPrice data again. Recall that we were interested in predicting Price from Mileage.
a. Fit a simple linear model predicting Price from Mileage.

Recall we did this in Lesson 7, using the following R code:

```
library(Stat2Data)
data(AccordPrice)
fit <- lm(Price ~ Mileage, data = AccordPrice)
```

b. Before we do any inference, it is important to make sure the conditions for a simple linear regression model are reasonably met.
Recall that we already did this in Lesson 7.
c. Is the association between Price and Mileage significant? Use a significance level of $\alpha=0.05$. Here is the output from summary (fit):

Call:
lm(formula $=$ Price \sim Mileage, data $=$ AccordPrice)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-6.5984	-1.8169	-0.4148	1.4502	6.5655

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $20.80960 .952921 .84<2 e-16$ ***
Mileage -0.1198 $0.0141 \quad-8.50 \quad 3.06 e-09$ ***

Signif. codes: $0{ }^{\prime} \not \star \star \star$ ' $0.001{ }^{\prime}{ }_{\star *}$ ' 0.01 '*' 0.05 '.' 0.1 , , 1
Residual standard error: 3.085 on 28 degrees of freedom
Multiple R-squared: 0.7207, Adjusted R-squared: 0.7107
F-statistic: 72.25 on 1 and 28 DF, p-value: 3.055e-09

- Other things to note:
- What's happening in the (Intercept) line of the output?
- If we want to do a one-sided test for β_{1} (for example, $H_{0}: \beta_{1} \geq 0$ versus $H_{a}: \beta_{1}<0$ in the Accord example above), how could we use the R output to get the correct p-value?

4 Confidence interval for the slope of a simple linear regression model

- If the conditions for a simple linear regression model are met, then we can construct a $100(1-\alpha) \%$ confidence interval for the slope β_{1} as follows:

Example 2. Use the output from Example 1 to do the following:
a. Construct a 95% confidence interval for β_{1}. Note that $t_{0.025,28} \approx 2.048$.
b. Interpret your confidence interval.

- You can compute the $95 \% \mathrm{CI}$ for β_{1} with this R code instead:
confint(fit, level=0.95) \# level is the confidence level
- The resulting output looks like this:

A matrix: 2×2 of type dbl		
	$\mathbf{2 . 5} \%$	$\mathbf{9 7 . 5} \%$
(Intercept)	18.8577657	22.76146004
Mileage	-0.1486848	-0.09093915

- Other things to note:
- Again, we could do something similar for β_{0}, but we usually don't
- There is a direct connection between the hypothesis test and the confidence interval:

$$
(1-\alpha) 100 \% \text { CI for } \beta_{1} \text { does not contain } 0 \quad \Longleftrightarrow t \text {-test for } \beta_{1} \text { will reject } H_{0} \text { at significance level } \alpha
$$

