Lesson 11. Inference for Simple Linear Regression Slope - Part 1

Note. In Part 2 of this lesson, you can run the R code that generates the outputs here in Part 1.

1 Overview

• Recall the simple linear regression model (population-level):

 $Y = \beta_0 + \beta_1 X + \varepsilon \qquad \varepsilon \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$

- We want to infer something about the population based on our sample
- We've learned how to obtain and interpret **point estimates** of β_0 , β_1 and σ_{ε}^2
- The parameter we're usually most interested in is
- Our main questions:

Do <i>X</i> and <i>Y</i> truly have a (linear) relationship at the population level?	
What can we infer about the nature of their relationship (size and direction) at the population level?	

2 Sampling distribution of $\hat{\beta}_1$

- We will see shortly that hypothesis testing and confidence interval computations for β_1 rely on the *t*-distribution
- Why?
- Under the conditions for simple linear regression:

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

• We can standardize:

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \sim N(0, 1)$$

• Since we don't know σ_{ε}^2 , we estimate it with $\hat{\sigma}_{\varepsilon}^2 = \frac{SSE}{n-2}$:

$$\frac{\hat{\beta}_1 - \beta_1}{SE_{\hat{\beta}_1}} \sim t(n-2) \quad \text{where} \quad SE_{\hat{\beta}_1} = \sqrt{\frac{SSE/(n-2)}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

• SE_{$\hat{\beta}_1$} is the **standard error (SE)** of the estimated slope $\hat{\beta}_1$

- 3 *t*-test for the slope of a simple linear regression model
 - Question: Does the predictor variable X have a significant association with the response variable Y?
 - Formal steps:
 - 1. State the hypotheses:
 - 2. Calculate the test statistic:
 - 3. Calculate the *p*-value:

 \Rightarrow *p*-value =

• If the conditions for simple linear regression hold, then the test statistic *t* follows

4. State your conclusion, based on the given significance level α :

If we reject H_0 (*p*-value $\leq \alpha$):

We reject H_0 because the *p*-value is less than the significance level $\underline{\alpha}$. We see significant evidence that X is associated with Y.

If we fail to reject H_0 (*p*-value > α):

We fail to reject H_0 because the *p*-value is greater than the significance level $\underline{\alpha}$. We do not see significant evidence that X is associated with Y.

The underlined parts above should be rephrased to correspond to the context of the problem

Example 1. Let's look at the AccordPrice data again. Recall that we were interested in predicting Price from Mileage.

a. Fit a simple linear model predicting Price from Mileage.

Recall we did this in Lesson 7, using the following R code:

```
library(Stat2Data)
data(AccordPrice)
fit <- lm(Price ~ Mileage, data = AccordPrice)</pre>
```

b. Before we do any inference, it is important to make sure the **conditions** for a simple linear regression model are reasonably met.

Recall that we already did this in Lesson 7.

c. Is the association between *Price* and *Mileage* significant? Use a significance level of $\alpha = 0.05$. Here is the output from summary(fit):

- Other things to note:
 - What's happening in the (Intercept) line of the output?
 - If we want to do a **one-sided test** for β_1 (for example, $H_0 : \beta_1 \ge 0$ versus $H_a : \beta_1 < 0$ in the Accord example above), how could we use the R output to get the correct *p*-value?

4 Confidence interval for the slope of a simple linear regression model

If the conditions for a simple linear regression model are met, then we can construct a 100(1 − α)% confidence interval for the slope β₁ as follows:

Example 2. Use the output from Example 1 to do the following:

- a. Construct a 95% confidence interval for β_1 . Note that $t_{0.025,28} \approx 2.048$.
- b. Interpret your confidence interval.

• You can compute the 95% CI for β_1 with this R code instead:

confint(fit, level=0.95) # level is the confidence level

• The resulting output looks like this:

A matrix: 2 × 2 of type dbl			
	2.5 %	97.5 %	
(Intercept)	18.8577657	22.76146004	
Mileage	-0.1486848	-0.09093915	

- Other things to note:
 - Again, we could do something similar for β_0 , but we usually don't
 - There is a direct connection between the hypothesis test and the confidence interval:

 $(1 - \alpha)100\%$ CI for β_1 does not contain 0 \iff *t*-test for β_1 will reject H_0 at significance level α